Aldine 9: Algebra H	lomework #39	Assigned	Due
www.aldine9math.v	weebly.com	A 1/28 Wed	A 1/30 Fri
		B 1/29 Thurs	B 2/2 Mon
Name:	Period:		

Choose the correct system of equations from the following situations.

1) Chase and Sara went to the candy store. Chase bought 5 pieces of fudge and 3 pieces of bubble gum for a total of \$5.70. Sara bought 2 pieces of fudge and 10 pieces of bubble gum for a total of \$3.60. Which system of equations could be used to determine the cost of 1 piece of fudge, *f*, and 1 piece of bubble gum, *g*?

Α	5f + 3g = 3.60	В	5f + 2g = 5.70
	2f + 10g = 5.70		3f + 10g = 3.60
С	f + a - 22	n	$5f \pm 3a = 5.70$
C	J + g - 22	υ	3j + 3g = 3.10
	7f + 13g = 9.30		2f + 10g = 3.6

2) The number of boys in Ms. Mershimer's classes was 18 less than twice the number of girls. She had a total of 111 students in her classes. Which system of equations will determine the number of boys, b, and the number of girls, g, in Ms. Mershimer's classes?

A	b = 2(g - 18) b + g = 111	B	b = 2g + 18 $g = 111 - b$
С	b = 2g - 18 b + g = 111	D	g = 2b - 18 $b = 111 - g$

3) The perimeter of a rectangular garden is 72 feet. Which system of equations can be used to find the dimensions of the garden if its length, L, is 3 times its width, w?

2L + 2w = 72	B	2L + 2w = 72
L = w - 3		L = 3w
Lw = 72 L = w + 3	D	L + w = 72 L = 3w
	2L + 2w = 72 L = w - 3 Lw = 72 L = w + 3	2L + 2w = 72 B L = w - 3 D L = w + 3

4) Jay purchased 3 CDs and 2 pairs of sunglasses for \$336. Will purchased 5 CDs and a pair of sunglasses for \$210. Which of the following models the situation, if x represents the number of CDs and y is the number of sunglasses?

$$\mathbf{F} \begin{cases} 336 = 3x + 2y \\ 210 = 5x + y \end{cases} \qquad \mathbf{G} \begin{cases} 210 = 3x + 2y \\ 336 = 5x + y \end{cases} \qquad \mathbf{H} \begin{cases} 336 = 2x + 3y \\ 210 = x + 5y \end{cases} \qquad \mathbf{J} \begin{cases} 210 = 2x + 3y \\ 336 = x + 5y \end{cases}$$

5) Solve the system by graphing.

y = 3x - 3

7) Based on the tables, where do the 2 lines intersect?

Line A		
-4	16	
-3	12	
0	0	
1	-4	
2	-8	

Line B		
-10	28	
-8	24	
-6	20	
-4	16	
-2	12	

8) Draw a system (2 lines) with no solution, and both lines have a negative slope.

